[1]MCCA-MOT: Multimodal Collaboration-Guided Cascade Association Network for 3D Multi-Object Tracking [J]. IEEE Transactions on Intelligent Transportation Systems. 2025: 26(1): 974-989. 第一作者
[2]Multi-object Tracking via Discriminative Embeddings for the Internet of Things. IEEE Internet of Things Journal. 2023, 10(12): 10532-10546. 第一作者
[3]Multimodal 3D Object Detection Based on Sparse Interaction in Internet of Vehicles [J]. IEEE Transactions on Vehicular Technology. 2024: 74(2): 2174-2186. 第一作者
[4]Multi-object Tracking via Deep Feature Fusion and Association Analysis. Engineering Applications of Artificial Intelligence. 2023, 124: 1-19. 第一作者
[5]Secrecy Performance Intelligent Prediction for Mobile Vehicular Networks: An DI-CNN Approach. IEEE Transactions on Intelligent Transportation Systems. 2024: 1-12. 通讯作者
[6]基于双融合框架的多模态3D目标检测算法. 电子学报. 2023, 51(11): 3100-3110. (CCF A类期刊). 通讯作者
[7]基于全局自适应有向图的行人轨迹预测. 电子学报. 2022, 50(8): 1905-1916. (CCF A类期刊). 通讯作者
[8]图像语义特征引导与点云跨模态融合的三维目标检测方法 [J]. 计算机辅助设计与图形学学报. 2024: 1-16. (CCF A类期刊). 第一作者
[9]Deep Learning-based 3D Multi-Object Tracking Using Multimodal Fusion in Smart Cities. Human-centric Computing and Information Sciences. 2024, 14:1-18. 第一作者
[10]图像与点云多重信息感知关联的三维多目标跟踪. 中国图象图形学报. 2024, 29(1): 163-178. (图像图形领域T1级期刊). 通讯作者
[11]Trajectory Prediction Based on Grouped Spatial-temporal Encoder. Frontiers of Computer Science. 2025, 19(1911373). 通讯作者
[12]Group Commonality Graph: Multimodal Pedestrian Trajectory Prediction via Deep Group Features. Pattern Recognition Letters, 2025, 192, 36-42. 通讯作者
[13]GSTA: Pedestrian Trajectory Prediction Based on Global Spatio-Temporal Association of Graph Attention Network. Pattern Recognition Letters. 2022, 160: 90-97. 通讯作者
[14]DLFusion: Painting-Depth Augmenting-LiDAR for Multimodal Fusion 3D Object Detection. ACM MM. 2023: 3765-3776. (CCF A类会议).
[15]融合多尺度特征和多重注意力的水下目标检测[J]. 农业工程学报, 2022, 38(20):129-139. (中国科协农林领域 T1 级期刊). 第一作者